A-Team
1-25-2003 Minutes

Rationale for high-level design

User Interface

· Very little business logic shown to user

· Generalized the drawable components

· Attribute Factory creates UI components on type

· Factor out common functionality to super class View

· Each view is represented by a subclass

· Think we can get away with one drawable component?

· If not, we can easily add what we need

Data Model

· Are we going to have a class for everything we need?

· We don’t really see any other way to do it.

· One strategy may be to go into Rose, export Java code, and convert it to C#

· Example: The data model won’t necessarily need a separate class for “author”. Looking back at it there can be more than one author name, so we will need a separate class.

· We need to sit down and define the rules for flattening out the dtd into the classes we really need.

· How is the data model going to sink up with the User Interface?

Validation

· Four different kinds for validation checks

· Meta, syntactic, semantic, domain

· Few articles read, will post in forum

· May want to consider putting into the system

· This also leads to another consideration

· How validation is tied into the data model when a user is specifying attributes for components. That is almost separate functionality of the data model.

· Ben mentioned MetaBeans and how they work

· What we’re tripping over is there are two pieces of functionality

· Validation vs. error prevention in UI

· One way may be to have an attribute in a rule to define if it is Runtime or some other type.

Generation

- Separate generators help separate out logic for XML generation.

